Discarding Practices, Transitions and Object Biographies

by Laurence Ferland

Object biography is a pillar of material culture studies; although principally focused on single things or small homogenous assemblages. This article suggests the object biography approach has the power to cater for large and varied collections. In order to achieve this task, biographical events and their transitions are compared. Of these transitions, the main one is discard. Since discarding is both an action performed at a person's will and a transition in artefacts' lives, it is an opportunity to study discarding practices as link and transformative events for people and things. Moreover, the often overlooked discarding practices have the ability to inform the people-object relationship in past daily lives. Middle Iron Age Broom village sampled “rubbish pits” provide the artefacts from which life events and transitions are established according to macroscopic and microscopic analyses. The latter are combined with contextual events related to deposition including geographical location, fragmentation, association and structured deposition. When these contextual elements are added to a material focused approach, they highlight the discarding in the village pits during the Middle Iron Age in not a mundane event.

Keywords: Object Biography, Iron Age England, Discard, Pit.

Introduction

Object biography is an approach which has been developed from a variety of material culture theories including the chaîne opératoire (Leroi-Gourhan, 1964, Lemmonier, 1986), gift-giving practices (Malinowski 1922; Mauss 2012 [1950]) and the understanding of things as commodities (Appadurai 1986; Kopytoff 1986). It therefore has been applied, critiqued, and overall tested since the mid 1960s.

Drawing on this tradition in material culture, discarding practices at Middle Iron Age Broom, a Bedfordshire site, are examined. In order to grasp an understanding of such practices, the transitions between artefacts’ biographical events are traced. To complete this material culture focused approach, contextual information related to discard in “rubbish” pits is also considered. It includes materials and objects associations, structured depositions, fragmentation, and spatial distribution.

Object Biography

Object biography has enjoyed a growing influence in material culture studies. The approach consists in the reconstruction of the main events an object went through until its archaeological recovery. The biography is then used as a basis to achieve a better understanding of past people’s relationship with their material culture. Artefacts’ main life events are raw material acquisition, production, utilisation and repairs, discard, and post-depositional events.

The principle of object biographies is found in Gosden and Marshall (1999): “as people and objects gather time, movement and change, they are constantly transformed, and these transformations of person and object are tied up with each other”. Interactions between people and objects, then, create meanings which are superimposed upon and blended with pre-existing ones. Achieving an object’s life reconstruction therefore requires an in-depth material analysis, making well-preserved objects able to inform the main biographical events necessary.

The biographical approach’s strength is its ability to follow objects in time and meanings using their physical transformations. Still, the requirement for observable details common to all artefacts in the assemblage make object biography
unsuited as main method for the common archaeological assemblage. In effect, the eclecticism of a typical assemblage may cause methodic comparisons to fail in the absence of common physical traits. Besides, most of object biography applications involve small homogenous assemblages or single and often singular objects only (Joy 2009; Joy 2015; Hoskins 1998; Gell 1998). To overcome this difficulty, the following paper looks at the problem the other way around and uses a biographical event common to all objects as comparison point: discard.

Discard

Discard may be a turning point in an artefact’s life, but it remains rarely considered as such in archaeological studies. Although discards are often excavated, they are interpreted as witnesses of past ways of life instead of proxies for past discarding practices. Activities’ byproducts of little interests to those who ate meat, knapped stone and smelted ore are obviously essential to find about past way of life. Yet, there is room, and a lot of it, to treat rubbish as the mundane, unglamorous and unwanted things curated as such. This said, discarding is also part of an organised system and imbued with heavy social and cultural meanings rooted in their own time, space, and cultural logic. More precisely, the relationship between objects and people is altered by choices made according to needs, environment, and feelings. Thus, the study of discarding actions and discarded material opens windows on a key transitional moment and, most importantly, on past daily life.

Transitions

The transition between two object biography’s milestone moments is therefore what must be investigated in order to study past discarding practices, their organisation and significations. As suggested by Whitehead (1929), an object’s meaning lies in the combination of all that is related to it at a precise moment. It also depends on a world of interlaced physical characteristics, cultural perceptions and personal emotions. Studying transitions is nonetheless problematic in archaeology: transitions do not leave traces. They vanish in a blink. Retrieving them by witness’s interviews is unlikely except in a few privileged cases (see Zedeno 2009; Zedeno 2008), and records are few in earlier time periods. One way around this ephemerality is objects’ material qualities and contextual evidences. As a matter of fact, object biography allows exploiting things’ material presence in order to reconstruct their main life events.

What happened to objects is valuable data. What people decided to do with things is also of importance since people acting upon objects is what sets the conditions for the next event in an object’s life. When observing the interplay between events and transition, it appears transitional moments are what makes things “part of the world” (Olsen 2010). This phenomenological point of view, which renders things available to human beings for what they are and not what they do (Harman 2002), is a vision that also considers objects as interactive at all time. Thereby, objects do not only carry out functional purposes nor do they disappear when useless or discarded. Objects’ perception and understanding is split in two states of being: ready-to-hand and present-at-hand (Harman 2002). The former designates the normal state of things, when they are where they should be and fulfil the tasks they are meant for. On the other hand, when an object is lost, displaced, in the way, broken or used as a spare tool in a different way than what it was designed for, one then is forced to consider the object for what it is and not what it does (Olsen 2010). In short, the awareness of objects is raised to human perception when an event happens and presents objects differently than what is otherwise expected. For example, losing its keys makes them painfully present-at-hand. Their absence confronts the owner to the place keys hold in his world and to keys’ properties that are unrelated to unlocking doors, such as being small and hard to find. Objects’ phenomenological positions belong to the world of transitions, hence their sheer importance in a discussion regarding the act of discarding, a transition itself.

Still, transitions’ ephemerality problem remains. Concretely, transitions may be assessed in observing an object’s transformations and alterations leading to subsequent life events. An example of
objects transition is found in Skibo’s (1992) discussion on soot and Kalinga’s ceramic. Because soot affects ceramic conductivity, when a pot which was mainly used to boil water reaches a certain level of sooting, it will stop boiling water efficiently. At that moment, the vessel becomes present-at-hand to its user who is then faced with a decision: what to do with a thing not fulfilling its duty anymore. In this transitional moment, the pot status will change from being primarily a container to boil water to either (1) reused as a simple container, (2) transformed into grog, or (3) discarded. Once the choice made, the reuse, recycling, or discard becomes the object’s new status. It is again ready-to-hand, but its place in the Kalingas’ world has transformed. The same can happen on a non-practical basis. In effect, after a transition, objects may keep their function while being infused with new meanings. Someone’s death or the end of a special event are instances of that sort. For example, a grandmother’s wedding ring, which was worn on her left hand, meant something completely different for her than the memorabilia it becomes when it is passed to a granddaughter who wears it as a necklace, even though the ring remains an adornment. Thus, retrieving transitional moments using common events in objects’ biographies is the suggested way to settle the transition matter.

Method

Based on the previous framework, Broom North Grange Middle Iron Age settlement pits’ content is sorted and examined. It begins with the biographies retrieval of a representative sample. Once the objects’ life events determined, they are to be compared with one another within a same category based on raw material. A standard is set for each matter (bone, ceramic, stone, metal). Meanwhile, life events are graded on a five stages scale: no, light, medium, heavy or high, and extreme. This system, though relative to this specific collection only, is the preferred division over typological categorisation. Indeed, natural alterations are alike on a similar material as they come from the same general environmental conditions. Types, on the other hand, are somewhat arbitrary and would require finding similarities between each artefact in order to accomplish the desired comparison.

Finding about artefacts’ four common biographical events (making, use, discard and post-depositional events) necessitates a detailed physical analysis. Production techniques and technology may inform about the skills and time involved in an object’s making, use-wear level gives an idea of the extent to which an artefact was used before being set aside and post-depositional events can tell the tale of discard treatment along with taphonomic processes. While discard does not leave traces on objects, it remains observable in the assemblage’s organisation and context. Those comprise artefacts’ fragmentation, location, association and structured deposition.

Making

Acknowledging making techniques is useful to evaluate skills requirement. Even if evaluating skills is subjective, technology studies, analytical as well as experimental, have shown that specific techniques ask for precise aptitudes. Moreover, knowledge and ability level can produce particular and observable characteristics (Inizan et al. 1992; Pelegrin et al. 1988; Apel 2008). Doubtlessly, a long, thin and flat stone blade requires a higher skill level than knapping ad hoc flakes. Therefore, using making techniques’ associated level of skills as well as the care given to quality and finish, artefacts are classified on a relative skills scale. It includes five echelons ranging from no to high skills. It must be noted that the skills required do not equal the crafter abilities, but the necessary skill level to achieve the observed result. Obviously, the observed characteristics vary according to the analysed material. Some good basis for stone are found in Inizan et al. (1992), for bones see LeMoine (1997), and see Rye (1981) for ceramic.

Use-wear and post-depositional events

Artefacts utilisation levels are deducted from use-wear analysis. As the current aim is not to retrieve the specific activities performed with the artefacts, but to report their utilisation level, the relative indicators taken into account are the preservation conditions as well as wear marks’ extensiveness and intensity. Once again, the levels are
classified on a scale ranging from no to heavy utilisation. Each sampled artefact is subject to macroscopic and microscopic observations using a DinoLite Pro digital microscope at 50X and 230X. Some pictures show slight variations in magnification, which were sometimes necessary to get worn surfaces at the right focus.

Post-depositional events are assessed using the same scale and observations as use-wear. Natural weathering effects are mostly differentiated from utilisation attrition marks by their extensive coverage of artefacts' surfaces and absence of patterns.

Discarding contextual elements

Location

Location cannot be overlooked as places carry their own meaning. Furthermore, places are also associated with activities which may produce discard and require their removal. The restricted number of features allows looking at the location matter using a map indicating their position relatively to structures and site activity areas.

Fragmentation

In order to look at intentional fragmentation (Chapman, 2000, Chapman et al., 2007), a statistical analysis based on a weight by fragment ratio is performed on all sampled features’ content. It results in the fragmentation level for each feature. The process is repeated for each material types to keep the material properties from being a bias. Only bone and ceramic are suitable as the other material types are not in sufficient number to yield undistorted results. To calculate the fragmentation ratio, the total weight and total number of pieces by material type has been compiled, yielding the average weight by fragments. All average weights by matters are compared with the other features’ content. The relative fragmentation level of each one is then ranked. The graphs presenting this data must be interpreted along with the sampled artefacts’ descriptions and pictures so a more realistic overview of the assemblage is projected (See Annex I & II).

Characterising the objects’ breaks is the next step. On the one hand, breaks’ freshness and refits inform about breakages potentially performed intentionally while, on the other hand, completeness and hoarding practices can also point toward intentionality. According to this idea, complete vessel finds in Iron Age pits are considered special deposits (see Tabor 2014). The articulation of a complete-incomplete polarisation of discard is not totally unlikely though simplistic. It however belongs in the bigger picture of deposition practices.

Association

The assemblage composition can inform about the deliberate management of discarded material inasmuch as a pattern emerges based on reoccurring artefacts combinations or separations. The proportion in quantity using the average weight by matter is also used for comparison between each feature while keeping in mind that no number align perfectly as they result from human’s actions which may be performed according to an ideal, but also customised to answer to external factors.

Structured Deposition

Features’ content organisation can also shed light on discarding practices peculiarities and their intentionality (Chapman 2012; Richard and Thomas 1984). As suggested by Hill (1995), there is no standardisation in deposits’ structuration across regions. However, various factors characterising intentionality or care can hint toward structuration within a feature. According to Hill (1995), the elements to look for as they represent patterns resulting from particular social practices are mainly defined by artefacts’ grouping, their sizes and the way they are organised within a pit. Because Broom artefacts’ positions are not drawn on the excavation sections except for very large ones, deposits organisation is inferred from the fieldwork descriptions. The information is compiled as schematic drawings to visualise potential structured deposition patterns. Their combination with the map, reconstructed objects’ biographies and statistical analysis provide the necessary
material to discuss Middle Iron Age Broom North Grange discarding practices.

Broom, a Middle Iron Age Settlement

The case under study, Broom Middle Iron Age settlement, is part of an excavation carried by the Cambridge Archaeological Unit between 1996 and 2012 at Broom quarry and its surroundings. Broom project covered three main sectors: Gypsy Lane is mostly Iron Age, Hill Lane is prominently marked by Bronze Age ditches and barrows also frequented by Iron Age people (Cooper and Edmonds 2007), and North Grange is the area to which the Iron Age settlement under scrutiny belongs (Tabor 2014). Broom North Grange is a three square kilometres site situated on the Ivel River west bank, nearby the town of Broom in Bedfordshire. The site occupation ranges from Neolithic to Early Medieval times though all do not geographically overlap. The Middle Iron Age ranges from the 4th to 2nd century BC. This dating is based on pottery analysis (Wells in Tabor 2014).

The Middle Iron Age village is made of 24 structures, mainly roundhouses, 21 enclosures and 870 pits. 566 of them have been reassembled in 17 groups (2-18, 1 belonging to an earlier excavation) based on their spatial location and pottery date. Since the Middle Iron Age sequence is considered as one in order to avoid wrong associations between pits and other elements at Broom North Grange, the pit groups have been classified according to their geographic location on the site. Thus, pit groups 4, 5, 6, 8, 9, 10 and 14 are enclosures related, groups 2, 11, 13, 16, 17 and 18 are situated in areas with traces of domestic activity while group 7 is situated between both. Three groups of pits, 3, 12 and 15, are on the site’s borders while 266 pits are ungrouped and scattered across the village. The last 27 pits are either clay lined for water collection, dedicated to storage or away from the settlement. These 27 pits are not to be considered in the sampling as they clearly hold a different function than potentially containing trash. For the remaining 843 pits, they are considered as special deposits’ pits and rubbish pits according to their content. Special pits’ content are labelled as such when they comprise human bones, associated bone groups (ABG), quern stones and pots either complete or in very large fragments. These artefacts types are considered likely to have a particular and relatively widespread meaning in the British Iron Age (Tabor 2014).

Sampling

The collection excavated from Broom North Grange Middle Iron Age village comprises tens of thousands of artefacts which have been sampled. The sampling strategy is a two steps manipulation including stratified sampling followed by a systematic random sampling. The former allows to set categories including some relevant, but less numerous, features from the site, while the latter insures the other elements are picked randomly.
Figure 1 Broom North Grange location (yellow) – Based on figure 1 in Tabor (2014)
Figure 2 Middle Iron Age enclosures, structures and field system – Figure 6 taken from Tabor (2014)
Figure 3 Middle Iron Age pit groups – Figure 10 taken from Tabor (2014)
Figure 4 Sampled features map - Based on figure 3 from Tabor (2014)
The first sampling level is the structure type, a variable identified on the basis of features’ content, mode of deposition and geographical association. Therefore, enclosure deposits, a roundhouse’s ditch, enclosures associated pits, domestic activity related pits, boundary pits, and ungrouped pits are targeted. The second stratum is a divide between special and a non-special deposits within each feature type. The features are chosen using random sampling within these subcategories using an online random number processor (Haahr 2014).

Table 1 List of Features

The same process is applied to artefacts in order to select a well-balanced sample favouring both biographical information retrieval and proportionality within the assemblage. The first sampling level is the feature, while the second is raw material, a categorisation allowing the sampled artefacts to respond to the same analysis criteria. All five stone and the one metal artefacts were selected as they are too few to be part of the proportional representation calculation whereas ceramic and bone finds require refinement. Thus, every bone and ceramic group was skimmed according to macroscopic elements presence. This method insures no artefact bearing obvious informative marks was left aside. The whole assemblage from the sampled features comprises 3488 artefacts. A great proportion of this number comes from feature 778 which includes an ABG made of 2344 bones, or 67% of the assemblage. This ABG was therefore considered as one artefact in order to get a representative 20% sample or 230 objects. On this were added the eight human bones from feature 778. Yet, that left only 25 artefacts to be randomly chosen. To give a chance to microscopic observations while keeping the analysis feasible, ten more objects were added to the randomly chosen artefacts. The 35 random ones were picked using a random number processor (Haahr 2014). The total number of artefacts carefully analysed is 248, representing 22% of the total assemblage.

Results

In the following table, a summary of the results coming out from the biographical and contextual analysis is presented for each feature. For the complete graphs, see annex I and for a fully developed explanation of the interpretations, see Ferland (2014). Every statement found in the table reflects the general tendency and anomaly observed across the feature content.
<table>
<thead>
<tr>
<th>Feature type</th>
<th>Feature</th>
<th>Making</th>
<th>Use-wear</th>
<th>Post-deposition</th>
<th>Location</th>
<th>Fragmentation</th>
<th>Structured Deposition</th>
<th>Associated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure ditches</td>
<td>405</td>
<td>Medium skills</td>
<td>Medium use</td>
<td>Open-air discard prior to burial</td>
<td>Enclosure's extremity</td>
<td>Weathering and trampling</td>
<td>No</td>
<td>Recut ditch prior to deposition</td>
</tr>
<tr>
<td></td>
<td>1529 (S)</td>
<td>High skills</td>
<td>Many objects without traces, Human skull with heat marks</td>
<td>Open-air discard prior to burial (short time)</td>
<td>Enclosure's extremity</td>
<td>Weathering and trampling</td>
<td>Yes</td>
<td>Quality pottery and human bones</td>
</tr>
<tr>
<td>Enclosure associate d pits</td>
<td>873</td>
<td>Average skills, Exception for a riveted iron blade handle</td>
<td>Low to high use, All objects used</td>
<td>Open-air discard prior to burial (short time)</td>
<td>Enclosure 12</td>
<td>Weathering and trampling</td>
<td>No</td>
<td>Refill with organic matter</td>
</tr>
<tr>
<td></td>
<td>652 (S)</td>
<td>High skills</td>
<td>No to extreme use, Mainly low use</td>
<td>Open-air discard prior to burial Direct burial for the complete vessel</td>
<td>Enclosure 8 Centre of roundhouse S8 (predates E8)</td>
<td>1 complete vessel broken right before burial All pieces refit</td>
<td>Yes</td>
<td>2 burnt strata All pieces of the complete vessel facing down Burnt clay and charcoal addition</td>
</tr>
<tr>
<td>Roundhouse ditch</td>
<td>1471</td>
<td>Low skills</td>
<td>No traces</td>
<td>Loss Naturally buried.</td>
<td>House ditch</td>
<td>N/A</td>
<td>No</td>
<td>Ditch kept clean</td>
</tr>
</tbody>
</table>

assemblage
<table>
<thead>
<tr>
<th>Boundary pits</th>
<th>573</th>
<th>High skills</th>
<th>High use</th>
<th>Open-air discard prior to burial</th>
<th>Site border</th>
<th>Weathering and trampling</th>
<th>No</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>778 (S)</td>
<td>Low skills</td>
<td>No and low use</td>
<td>Dog buried directly Senile cow in open-air prior to burial</td>
<td>Site border Slightly apart from the pit group</td>
<td>Cow’s leg removed 99% of the assemblage is bone (ABG)</td>
<td>Yes</td>
<td>Carefully laid ABGs</td>
<td>Vessel with burnt content and ABGs.</td>
</tr>
<tr>
<td>Activity area pits</td>
<td>568</td>
<td>High and expert skills</td>
<td>Medium use</td>
<td>Open-air discard prior to burial</td>
<td>Between roundhouse S24 and enclosure 14 Nearby enclosure 11’s entrance</td>
<td>Low Weathering and trampling</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>519 (S)</td>
<td>High skills</td>
<td>Medium use Fire marks</td>
<td>Open-air discard prior to burial</td>
<td>Bone crumbs in a vessel One complete vessel.</td>
<td>98% of ceramic 1 complete vessel facing east</td>
<td>Vessel facing east</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ungrouped pits</td>
<td>920</td>
<td>Medium skills Except for 1 expertly made vessel</td>
<td>Medium use</td>
<td>Open-air discard prior to burial</td>
<td>Enclosure 19</td>
<td>Weathering and trampling. No. Pit filled naturally.</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>922 (S)</td>
<td>Low to expert skills</td>
<td>Medium use Fire marks Soot on breaks</td>
<td>Buried directly Some objects in open-air prior to burial</td>
<td>Just outside of enclosure 19</td>
<td>Fire cracked quern stone Large pottery fragments</td>
<td>Curated pit filling</td>
<td>Heat Quern stone</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Results by feature
The previous features content description sheds light on the fact special and non-special deposits are not in fact clearly separated according to artefacts' biographical paths. Only ceramic seems to contradict this statement according to its making trend. Indeed, there is more skilled pottery production with burnishing, decoration and tournette finish in the special features. However, the making technique of most sherds found in non-special deposits could not be identified. This situation makes it hard to assert ceramic is better made in special deposits since the absence of making markings can also indicate highly skilled potters. Moreover, these are locally made as the raw materials are locally sourced (Cooper and Edmonds 2007). Furthermore, bones tend to be larger in non-special deposits and uncommon objects such as the quern stone and the iron blade handle have been retrieved in both deposit types. Use level is similar and most artefacts except ABGs perhaps seem to have fulfilled utilitarian functions at some point in their lives. Finally, the weathering traces indicate that most artefacts were not directly discarded in pits but were first exposed to the elements and at animals' mercy. In conclusion, the discard pattern, except for a few objects such as the quern stone, is widely the same: they are more or less used, discarded in an outdoor transitory location for short to extended times before being redeposited in former storage pits or in ditches.

Discussion

Following the biographical analysis, it seems most of the material transiting in open air deposits before ending up in disaffected grain storage pits have been considered much like the contemporary rubbish; that is to say as things discarded because they are no longer needed or wanted. The objects were left outside with minimal curation, apparently in a variety of discard piles according to the diversity of post deposition stigma. However, contrarily to the idea of rubbish being the biography final stage, prehistoric rubbish was, partly at least, not considered as dead, but in transition instead.

This said, some of the buried objects do not fit the rubbish category. They did not transit by an outdoor discard location and were in fact intentionally interred. Memory is closely linked to this intentionality since buried objects are the catalyst for boundaries definition and space organisation. Pit content is also related to a strong life-cycle idea, most likely a node in Middle Iron Age worldview (Bradley 1990). An example of this remembrance importance is pit 652 (Figure 4), located right in the centre of a probably destroyed by then Early Iron Age roundhouse. Not only was the house recalled by the pit located exactly in its centre, but a performance, the breaking of a vessel and its burial, marks this pit filling. Actions with the same remembrance aim were also carried out in order to mark boundaries within the site as well as to delineate the village.

Effectively, it appears the largest pit groups are situated on the site boundaries. Deposits are also identified nearby enclosures' entrances as well as alongside the site's boundaries. Iron Age pits are also found outside the village, nearby the Bronze Age barrows at Hill Lane. Interestingly, Bronze Age villages are known to be organised according to their cosmology, what is observable by their orientation based on cardinal points (Bradley 2005), deposits placed at entrances in order to mark passages and deposits nearby barrows (Brück 1999a; Brück 1999b). Since these patterns are also observed in Middle Iron Age Broom and at other Iron Age sites though in a less organised fashion (Collis 1996; Rees 2008), it seems that practices inherited from the Bronze Age were kept alive although slightly transformed in form and meaning. It also appears limits and thresholds were of growing importance during the Iron Age (Evans and Hodder 2006). However, Broom is an open settlement without full ditches or enclosures visually indicating boundaries. Conversely, Broom's boundaries are marked using buried objects, a practice not directed toward outsiders since filled pits are invisible. Instead, boundary pits are Broom's inhabitants concern since they remember the artefacts' burial in former silos. The evidence from association and structured deposition hint toward practices aimed at imprinting both the landscape and memories. To begin with, almost all features studied showed signs of structuration and curation, either as carefully placed things or by pits and enclosures recuts and refilling (Richard and Thomas 1984). Only the ungrouped pit 920 (filled naturally) and the roundhouse’s ditch (kept clean) differ.

Fire is another component of Broom discarding practices and is used to imprint memories. In pit 778, a bowl with burnt material is buried with the ABGs; in pit 652, two strata were entirely burnt; and in pit 922, 55% of the assemblage showed soot and rubefaction traces. The rubefied quern stone was also broken, most likely fire cracked and one sherd had soot on its break. The latter was
thereby put in the fire after it broke, but before its deposition. Meanwhile, in pit 1529, pieces of the human skull also bear heat marks as if the skull was put nearby fire and burned by it. It also seems like fire is associated with the specific objects which made their entire deposits categorised as special.

Even though fragmentation is not widely used as performance, wholeness is. Complete vessels are present in features 652 and 519, two ABGs are found in pit 778 (see Annex II) and assemblages made of almost 100% of the same matter such as 519 (see Annex I) relates to the well-known practice of metal hoarding in the Iron Age (Bradley 1990; Bradley 2005). Assembling things just like breaking them apart is an action people can remember and which also help keeping the memory of their buried location on boundaries alive.

When gathering all these observations, it appears depositions at Broom are a set of cultural practices used to mark passages and boundaries in the inhabitants’ memory. The discard of old things, burnt foodstuff as well as human and animal bones in silos, which normally contain food or live seeds for the next season sow, makes discarding an action woven in the weft of life cycle idea. In effect, the deposits’ curation, the choice of already discarded objects to accompany the more extraordinary ones, the small number of pits with deposits (870 over 200 years), and the fire treatment all point away from daily discarding. Broom pits’ content results of performances where things are buried in ancient silos, in order to delineate spaces in the village and the village itself. However, boundaries are not inscribed on the landscape, but in the community memories instead.

Conclusion

In summary, discard is neither a mindless nor a meaningless activity in the Middle Iron Age. In fact, objects will go through a variety of discard location and will acquire transformative meanings throughout their post-discard journeys. Most ordinary things are rejected in an outdoor and over ground location as unwanted objects. For some, it is a transitory state as they will be picked and redeposited in former storage pits and enclosures’ ditches. There, they participate in memory, time, and boundary marking which are all related by the act of deposition.

Achieving the previous interpretation required the combination of the object biography approach with contextual information to identify and explain the transitions leading from a life event to another. The focus on transition supports the understanding of people’s interactions with their material productions since transitional moments are times when artefacts are present-at-hand. In such times, things’ state of being is at a transformative threshold where people in interaction with them reconsider the objects’ status quo. Only after a decision regarding the objects is made can it leave that limbo state. Hence, transitions allow highlighting passing from the ordinary sphere of daily life to more extraordinary ones. Discard in this case being a most transformative episode. Moreover, the impact of transition on objects seizes the essence of the biographical approach since it pinpoints the moment when the gathering of time, movement and change do transform people and objects altogether. Therefore, the association of objects and places affects both and revisits their meanings. It may redefine space and things in people’s minds and memories, creating a fusion of space, things and meaning through people. This spiral of interacting events happens in transitional times, where the interplay between events and transitions is also an interpretative one. Indeed, when looking at biographical events, the searcher’s eye is looking at the archaeological record as an external observer. When looking into transitions, however, the emic point of view naturally comes into play since the transitions consists of decisions culturally and personally informed, aspects which are rarely available to archaeologists. In the end, without bringing back the past to life, the exploration of transitional times within a contextualised biographical framework allows archaeologists a peek into past people worldviews.
Bibliography

OLSEN, B. 2010. In defense of things: archaeology and the ontology of
objects. Lanham, MD ;Plymouth: AltaMira Press.

Annex I - Comparisons between Features

All Features Content Proportions Comparison

Bone average weight
Annex II - Features Description and Biography

Legend

- Bones
- Burnt clay
- Ceramic
- Charcoal
- Stone
- Metal
Description

Biography
Description

519 - Special pit in intense activity area

<table>
<thead>
<tr>
<th>Total weight</th>
<th>Artefact number</th>
<th>Average weight/g/piece</th>
</tr>
</thead>
<tbody>
<tr>
<td>13g</td>
<td>9</td>
<td>1.44 g</td>
</tr>
<tr>
<td>1697g</td>
<td>65</td>
<td>26.1 g</td>
</tr>
<tr>
<td>4g</td>
<td>1</td>
<td>4 g</td>
</tr>
<tr>
<td>1g</td>
<td>12</td>
<td>0.08 g</td>
</tr>
</tbody>
</table>

Total for feature: 1715g, 87

Assemblage composition

- Ceramic: 98.9%
- Bone: 0.1%
- Stone: 0.1%
- Other: 0.1%

Biography

-58-
568 - Non-special pit in intense activity area

Total weight: 27 g
Artefact number: 3
Average weight (g)/piece: 9 g

Total for feature: 107 g

Assemblage composition:
- Ceramic: 25.2%
- Bone: 74.8%

Description

Biography
Description

Biography

-60-
652 - Special enclosure pit

Description

Biography
Description

Biography

-62-
Description

873 - Non-special enclosure pit

- Total weight: 417g
- Artefact number: 63
- Average weight (g/piece): 6.57 g

- Total for feature: 949g
- Artefact number: 94

Assemblage composition:
- Ceramic: 44%
- Bone: 54%
- Burnt clay: 2%
- Metal: 1%

Biography
Description

Biography
922 - Special ungrouped pit

Total weight	Artifact number	Average weight (g)/piece
953g | 156 | 6.10 g
342g | 179 | 19.79 g
1366 g | 1 | 1366 g
11 g | 1 | 11 g
1 g | 2 | 0.5g

Total for feature: 5758g 339

Assemblage composition:
- Bone: 16.5%
- Stone: 59.9%
- Burnt shell: 23.7%
- Ceramics: 0%
- Clay: 0%

Description

Biography
Description

Biography

-66-
Description

Biography
Annex III – Example of Standard

Mechanical Weathering on Bones

- Light Mechanical Weathering – 1206.3.12
- No Mechanical Weathering – 2096.59.9
- Medium Mechanical Weathering – 1204.4.9
- High Mechanical Weathering – 1398.8.14
- Extreme Mechanical Weathering – 1742.37.7